\qquad
\qquad

Lesson 14.1 Prisms and Pyramids

Complete the table.

The flat surface of a solid is called a face.
Two faces meet at an edge.
Edges meet at a vertex.
The mathematical name for corners is vertices.

Solid	Number of Faces (F)	Number of Vertices (V)	Number of Fdges (E)	
2. \quad cube				
	rectangular prism			
	triangular prism			
4.	square pyramid			
	triangular pyramid			

\qquad

Complete.

6. What general statement can you make about the number of faces, the number of vertices, and the number of edges of prisms and pyramids?
\qquad
\qquad
\qquad
\qquad
7. Which of these nets can be folded to form a cube? Shade the circles that represent the correct answers.

\bigcirc

\bigcirc

\bigcirc

\bigcirc

\bigcirc

\bigcirc

\bigcirc

\bigcirc
\qquad
8. Which of these nets can be folded to form a rectangular prism? Shade the circles that represent the correct answers.

\bigcirc

\bigcirc

O

\bigcirc
9. Which of these nets can be folded to form a triangular prism? Shade the circles that represent the correct answers.

\bigcirc

\bigcirc

\bigcirc

\bigcirc

\qquad
10. Which of these nets can be folded to form a square pyramid? Shade the circles that represent the correct answers.

\bigcirc
\bigcirc

\bigcirc

\bigcirc

O

\bigcirc
11. Which of the nets can be folded to form a triangular pyramid? Shade the circles that represent the correct answers.

\bigcirc

\bigcirc

\bigcirc

O
\qquad

Date:

Lesson 14.2 Cylinder, Sphere, and Cone

Complete.

1.

A cylinder has \qquad congruent circular faces and curved surface.

Which of these nets can be folded to form a cylinder? Shade the circle that represents the correct answer.

2.

A cone has \qquad curved surface.
\qquad

Which of these nets can be folded to form a cone? Shade the circle that represents the correct answer.

3. Which of these three-dimensional figures have no vertices?

Shade the circles that represent the correct answers.

\bigcirc

\bigcirc

\bigcirc

\bigcirc

\bigcirc

Write \boldsymbol{T} for True and Ffor False.

4. A pyramid has a curved surface. ()
5. A prism has two parallel bases. ()
6. A cone has three vertices. ()
7. A cube has triangular faces. ()
8. A cylinder has two parallel bases. ()
9. A sphere has a curved surface. ()

112
Chapter 14 Lesson 14.2
\qquad

Date:

\qquad

Put on Your Thinking Cap!

Determine the number of faces, edges, and vertices each figure has.

The flat surface of a solid is called a face.
The line segment where two faces meet is an edge. Edges meet at a vertex.

Complete the table.

	Solid	Number of Faces (F)	Number of Edges (E)	Number of Vertices (V)	$F+\boldsymbol{V}-\mathrm{E}$
1.	cube				
2.	cone				
3.	triangular prism				
4.	square pyramid				
5.	triangular pyramid				
6.	cylinder				

Identical sticks were used to form a series of vertical three-dimensional structures. The first three shapes are shown below.

Complete the table.
7.

Shape	Number of Cubes	Number of Sticks Used	Total Surface Area (length of each stick is 1 unit)
1	1	12	6
2	2	20	10
3	3	28	14
4	4	$?$	$?$
5	5	$?$	$?$

Solve. Show your work.
8. How many sticks are needed to form Shape 10?

